279 research outputs found

    Persistently Pre-Modern:Dynamics of change in the world of late Pre-Modernity

    Get PDF

    Influence of intranasal and carotid cooling on cerebral temperature balance and oxygenation

    Get PDF
    The present study evaluated the influence of intranasal cooling with balloon catheters, increased nasal ventilation, or percutaneous cooling of the carotid arteries on cerebral temperature balance and oxygenation in six healthy male subjects. Aortic arch and internal jugular venous blood temperatures were measured to assess the cerebral heat balance and corresponding paired blood samples were obtained to evaluate cerebral metabolism and oxygenation at rest, following 60 min of intranasal cooling, 5 min of nasal ventilation, and 15 min with carotid cooling. Intranasal cooling induced a parallel drop in jugular venous and arterial blood temperatures by 0.30 ± 0.08°C (mean ± SD), whereas nasal ventilation and carotid cooling failed to lower the jugular venous blood temperature. The magnitude of the arterio-venous temperature difference across the brain remained unchanged at −0.33 ± 0.05°C following intranasal and carotid cooling, but increased to −0.44 ± 0.11°C (P < 0.05) following nasal ventilation. Calculated cerebral capillary oxygen tension was 43 ± 3 mmHg at rest and remained unchanged during intranasal and carotid cooling, but decreased to 38 ± 2 mmHg (P < 0.05) following increased nasal ventilation. In conclusion, percutaneous cooling of the carotid arteries and intranasal cooling with balloon catheters are insufficient to influence cerebral oxygenation in normothermic subjects as the cooling rate is only 0.3°C per hour and neither intranasal nor carotid cooling is capable of inducing selective brain cooling

    Prolonged self-paced exercise in the heat - environmental factors affecting performance

    Get PDF
    In this review we examine how self-paced performance is affected by environmental heat stress factors during cycling time trial performance as well as considering the effects of exercise mode and heat acclimatization. Mean power output during prolonged cycling time trials in the heat (≄30°C) was on average reduced by 15% in the 14 studies that fulfilled the inclusion criteria. Ambient temperature per se was a poor predictor of the integrated environmental heat stress and 2 of the prevailing heat stress indices (WBGT and UTCI) failed to predict the environmental influence on performance. The weighing of wind speed appears to be too low for predicting the effect for cycling in trained acclimatized subjects, where performance may be maintained in outdoor time trials at ambient temperatures as high as 36°C (36°C UTCI; 28°C WBGT). Power output during indoor trials may also be maintained with temperatures up to at least 27°C when humidity is modest and wind speed matches the movement speed generated during outdoor cycling, whereas marked reductions are observed when air movement is minimal. For running, representing an exercise mode with lower movement speed and higher heat production for a given metabolic rate, it appears that endurance is affected even at much lower ambient temperatures. On this basis we conclude that environmental heat stress impacts self-paced endurance performance. However, the effect is markedly modified by acclimatization status and exercise mode, as the wind generated by the exercise (movement speed) or the environment (natural or fan air movement) exerts a strong influence

    Effect of heat and heat acclimatization on cycling time trial performance and pacing

    Get PDF
    PURPOSE: This study aimed to determine the effects of heat acclimatization on performance and pacing during outdoor cycling time trials (TT, 43.4 km) in the heat. METHODS: Nine cyclists performed three TT in hot ambient conditions (TTH, approximately 37°C) on the first (TTH-1), sixth (TTH-2), and 14th (TTH-3) days of training in the heat. Data were compared with the average of two TT in cool condition (approximately 8°C) performed before and after heat acclimatization (TTC). RESULTS: TTH-1 (77 ± 6 min) was slower (P = 0.001) than TTH-2 (69 ± 5 min), and both were slower (P < 0.01) than TTC and TTH-3 (66 ± 3 and 66 ± 4 min, respectively), without differences between TTC and TTH-3 (P > 0.05). The cyclists initiated the first 20% of all TT at a similar power output, irrespective of climate and acclimatization status; however, during TTH-1, they subsequently had a marked decrease in power output, which was partly attenuated after 6 d of acclimatization and was further reduced after 14 d. HR was higher during the first 20% of TTH-1 than that in the other TT (P < 0.05), but there were no differences between conditions from 30% onward. Final rectal temperature was similar in all TTH (40.2°C ± 0.4°C, P = 1.000) and higher than that in TTC (38.5°C ± 0.6°C, P < 0.001). CONCLUSIONS: After 2 wk of acclimatization, trained cyclists are capable of completing a prolonged TT in a similar time in the heat compared with cool conditions, whereas in the unacclimatized state, they experienced a marked decrease in power output during the TTH

    Heat acclimation does not protect trained males from hyperthermia-induced impairments in complex task performance

    Get PDF
    This study evaluated if adaptation to environmental heat stress can counteract the negative effects of hyperthermia on complex motor performance. Thirteen healthy, trained males completed 28 days of heat acclimation with 1 h daily exercise exposure to environmental heat (39.4 &#177; 0.3 &#176;C and 27.0 &#177; 1.0% relative humidity). Following comprehensive familiarization, the participants completed motor-cognitive testing before acclimation, as well as after 14 and 28 days of training in the heat. On all three occasions, the participants were tested, at baseline (after ~15 min passive heat exposure) and following exercise-induced hyperthermia which provoked an increase in core temperature of 2.8 &#177; 0.1 &#176;C (similar across days). Both cognitively dominated test scores and motor performance were maintained during passive heat exposure (no reduction or difference between day 0, 14, and 28 compared to cool conditions). In contrast, complex motor task performance was significantly reduced in hyperthermic conditions by 9.4 &#177; 3.4% at day 0; 15.1 &#177; 5.0% at day 14, and 13.0 &#177; 4.8% at day 28 (all p &lt; 0.05 compared to baseline but not different across days). These results let us conclude that heat acclimation cannot protect trained males from being negatively affected by hyperthermia when they perform complex tasks relying on a combination of cognitive performance and motor function

    Habitual Heat Exposure and Acclimatization Associated with Athletic Performance in the Multistage Marathon des Sables

    Get PDF
    Introduction The aim of this study was to investigate the impact of heat acclimatization on athletic performance during the 7-day Marathon des Sables (MdS) which takes place in the Sahara Desert. Methods Anonymous data for nationality and average running speed (km/h) of all runners who ran the MdS during the period 2000–2015 were collected from the official website of the race and other related websites. Average maximum temperature for each runner’s country during the month preceding the MdS was collected from www.weatherbase.com. Athletes were divided into two Torigin groups as follows: 25 to 15°C (i.e., cold countries) and 15 to 35°C (i.e., warm countries). Results Overall, 12467 (10828 men; 1639 women) athletes from 78 countries (37 cold; 41 warm) participated in the MdS during the 16-year study period. The ambient temperature of these countries one month prior to the MdS ranged from 24.2 to 34.4°C. Athletes’ average running speed during the MdS ranged from 2.9 to 13.4 km/h. Moreover, athletes who originated from warm countries ran the MdS 10.7% faster compared to athletes from cold countries. Conclusion The natural heat acclimatization achieved by living in warmer countries seems to provide an advantage during the MdS

    Current and projected regional economic impacts of heatwaves in Europe

    Get PDF
    Extreme heat undermines the working capacity of individuals, resulting in lower productivity, and thus economic output. Here we analyse the present and future economic damages due to reduced labour productivity caused by extreme heat in Europe. For the analysis of current impacts, we focused on heatwaves occurring in four recent anomalously hot years (2003, 2010, 2015, and 2018) and compared our findings to the historical period 1981-2010. In the selected years, the total estimated damages attributed to heatwaves amounted to 0.3-0.5% of European gross domestic product (GDP). However, the identified losses were largely heterogeneous across space, consistently showing GDP impacts beyond 1% in more vulnerable regions. Future projections indicate that by 2060 impacts might increase in Europe by a factor of almost five compared to the historical period 1981-2010 if no further mitigation or adaptation actions are taken, suggesting the presence of more pronounced effects in the regions where these damages are already acute.D.G.L. acknowledges financial support from the European Commission (H2020-MSCA-IF-2015) under REA grant agreement no. 705408. A.B., A.C., A.F., and L.N. received funding from the European Union’s Horizon 2020 research and innovation program under the grant agreement no. 66878

    Impact of adrenaline and metabolic stress on exercise-induced intracellular signaling and PGC-1α mRNA response in human skeletal muscle

    Get PDF
    This study tested the hypothesis that elevated plasma adrenaline or metabolic stress enhances exercise‐induced PGC‐1α mRNA and intracellular signaling in human muscle. Trained (VO (2)‐max: 53.8 ± 1.8 mL min(−1) kg(−1)) male subjects completed four different exercise protocols (work load of the legs was matched): C – cycling at 171 ± 6 W for 60 min (control); A – cycling at 171 ± 6 W for 60 min, with addition of intermittent arm exercise (98 ± 4 W). DS – cycling at 171 ± 6 W interspersed by 30 sec sprints (513 ± 19 W) every 10 min (distributed sprints); and CS – cycling at 171 ± 6 W for 40 min followed by 20 min of six 30 sec sprints (clustered sprints). Sprints were followed by 3:24 min:sec at 111 ± 4 W. A biopsy was obtained from m. vastus lateralis at rest and immediately, and 2 and 5 h after exercise. Muscle PGC‐1α mRNA content was elevated (P < 0.05) three‐ to sixfold 2 h after exercise relative to rest in C, A, and DS, with no differences between protocols. AMPK and p38 phosphorylation was higher (P < 0.05) immediately after exercise than at rest in all protocols, and 1.3‐ to 2‐fold higher (P < 0.05) in CS than in the other protocols. CREB phosphorylation was higher (P < 0.05) 2 and 5 h after exercise than at rest in all protocols, and higher (P < 0.05) in DS than CS 2 h after exercise. This suggests that neither plasma adrenaline nor muscle metabolic stress determines the magnitude of PGC‐1α mRNA response in human muscle. Furthermore, higher exercise‐induced changes in AMPK, p38, and CREB phosphorylation are not associated with differences in the PGC‐1α mRNA response

    Analysis of the dynamic air conditioning loads, fuel consumption and emissions of heavy-duty trucks with different glazing and paint optical properties

    Get PDF
    The European transportation sector employs 10 million people and accounts for 4.6% of the European Union GDP. Due to climate change, this workforce is increasingly affected by high temperatures and radiant loads, particularly during summer. They rely on air conditioning (AC) to minimize heat inside the truck cabins, increasing fuel consumption and tailpipe emissions. Because sustainable transportation is crucial for climate change mitigation, we developed a numerical investigation on the dynamic thermal exchanges of cabins of heavy-duty trucks in realistic conditions of a summer workday, to quantify the potential impact of interventions in the glazing and paint optical properties, over the truck AC loads. We observed that the changes in air temperature and solar irradiation throughout the workday imply substantial variations in the truck's AC loads and, consequently, in its fuel consumption and tailpipe emissions. Furthermore, windshields and side windows with transmissivity of 0.33 instead of typical 0.79 and 0.84, respectively, can reduce AC loads by up to 16%. External paints with reflectivity of 0.70 instead of 0.04 can reduce the AC loads by up to 30%, whereas cumulative changes to glazing and paint can reduce the AC load by up to 40%. These interventions can lower fuel consumption and emissions by up to 0.4%. These results show that important improvements in fuel efficiency and tailpipe emissions are possible, if the research community, policy makers and industry stakeholders successfully promote the adaptation of the European transportation fleet
    • 

    corecore